MARK SCHEME for the October/November 2015 series

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

	Page 2	Cambridge Intern	Mark Scheme ational AS/A Level – October/November 2015	Syllabus 9702	Pape 42	er
			Section A			
1	(a) (gravitational force	e provides/is the centripetal force		B1	
		$GMm_{\rm S}/x^2 = m_{\rm S}v^2$	/x (allow x or r, allow m or $m_{\rm S}$)		M1	
		$E_{\rm K}$ = $\frac{1}{2}m_{\rm S}v^2$ and c	clear algebra leading to $E_{\rm K} = GMm_{\rm S}/2x$		A1	[3]
	(i	$E_{\rm P}$ = $-GMm_{\rm S}/x$ (sign essential)		B1	[1]
	(ii	$E_{\rm T} = E_{\rm K} + E_{\rm P}$ = $GMm_{\rm S}/2x -$ = $- GMm_{\rm S}/2x$	GMm _s /x (allow ECF from (a)(ii))		C1 A1	[2]
	(b) (decreases			B1	[1]
	(i	decreases			B1	[1]
	(i	decreases			B1	[1]
	(i [,]	increases			B1	[1]
	(r answers in (b) alle	ow ECF from (a)(iii))			
2	(a) c	eys the equation <i>p\</i> symbols explained	<i>V = nRT or pV/T</i> = constant ; <i>T</i> in kelvin/thermodynamic temperature		M1 A1	[2]
	(b) (temperature rise	= 48 K		A1	[1]
	(1	$< c^2 > \infty$ T or equiv $< c^2 > = (353/305)$ $c_{r.m.s.} = 1480 \mathrm{m s^{-1}}$	valent $1 \times 1.9 \times 10^6$		C1 C1 A1	[3]
3	(a) h f	at/thermal energy g is work done on the	gained by system <i>or</i> energy transferred to system l e system <i>or</i> minus work done by the system	by heating	B1 B1	[2]
	(b) (<i>either</i> volume dec <i>or</i> small volume c (thermal) energy internal energy in	creases so work done on the system change so work done on system negligible absorbed to break lattice structure acreases		M1 M1 A1	[3]
	(1	gas expands so v no time for therm internal energy de	vork done by gas (against atmosphere) al energy to enter or leave the gas ecreases		M1 M1 A1	[3]
4	(a) f	e: (body oscillates) ces applied	without any loss of energy/no resistive forces/no e	external	B1	
	t (cea: continuous en (ternal) periodic for	ergy input (required)/body is made to vibrate by ai ce/driving oscillator	1	B1	[2]

Pa	age (3		Mark Scheme	Syllabus	Pape	er
			Car	mbridge International AS/A Level – October/November 2015	9702	42	
	(b)	(i)	id m fre	ea of resonance aximum amplitude at natural frequency equency = 2.1 Hz (<i>allow 2.08 to 2.12 Hz</i>)		B1 B1 B1	[3]
		(ii)	pe	eak not very sharp/amplitude not infinite so frictional forces are pr	esent	B1	[1]
	(c)	V	= a = 2 = 0	$\pi \times 2.1 \times 4.7 \times 10^{-2}$ (allow ECF from (b)(i)) .62 m s ⁻¹		C1 A1	[2]
5	(a)	(i)	fo ar	rce proportional to the product of the two/point charges nd inversely proportional to the square of their separation		B1 B1	[2]
		(ii)	1.	force radially away from sphere/to right/to east		B1	[1]
			2.	(maximum) at/on surface of sphere $or x = r$		B1	[1]
			3.	$F \propto 1/x^2$ or $F = q_1 q_2/(4\pi \varepsilon_0 x^2)$		C1	
				ratio = 16		A1	[2]
	(b)	E	= q/	$T(4\pi\varepsilon_0 x^2)$ or $E \propto q$		C1	
		ma	axim	num charge = $(2.0/1.5) \times 6.0 \times 10^{-7}$ = 8.0×10^{-7} C		C1	
		ad	ditic	onal charge = 2.0×10^{-7} C		A1	[3]
6	(a)	(i)	fo al	rce = <i>mg</i> ong the direction of the field/of the motion		M1 A1	[2]
		(ii)	no	o force		B1	[1]
	(b)	(i)	fo in	rce due to <i>E</i> -field downwards so force due to <i>B</i> -field upwards to the plane of the paper		B1 B1	[2]
		(ii)	fo fo (<i>u</i>	rce due to magnetic field = Bqv rce due to electric field = Eq use of F_B and F_E not explained, allow 1/2)		B1 B1	
			fo	rces are equal (and opposite) so <i>Bv</i> = <i>E</i> or <i>Eq</i> = <i>Bqv</i> so <i>E</i> = <i>Bv</i>		B1	[3]
	(c)	sk in	etch 'upv	n: smooth curved path vard' direction		M1 A1	[2]
7	(a)	mi for (<i>re</i>	nim em	um frequency of e.m. radiation/a photon (not "light") hission of electrons from a surface hence to light/UV rather than e.m. radiation, allow 1/2)		M1 A1	[2]

Page 4		ŀ	Mark Scheme		Paper	
		(Cambridge International AS/A Level – October/November 2015	9702	42	
(b))	E _{MA} elec	_{Ax} corresponds to electron emitted from surface ectron (below surface) requires energy to bring it to surface, so less tha	an E_{MAX}	B1 B1	[2]
(c	:)	(i)	$1/\lambda_0 = 1.85 \times 10^6$ (allow 1.82 to 1.88)		C1	
			$f_0 = c / \lambda_0$ = 3.00 × 10 ⁸ × 1.85 × 10 ⁶ = 5.55 × 10 ¹⁴ Hz		A1	[2]
		(ii)	$ \Phi = hf_0 $ = 6.63 × 10 ⁻³⁴ × 5.55 × 10 ¹⁴ (allow ECF from (c)(i)) = 3.68 × 10 ⁻¹⁹ J		C1 A1	[2]
(0	d)	ske inte	etch: straight line with same gradient ercept between 1.0 and 1.5		M1 A1	[2]
8 (a	a)	nuc nuc par	cleus: <u>small</u> central part/core of an atom cleon: proton or a neutron rticle contained within a nucleus		B1 B1 B1	[3]
(b)	(i)	1. decay constant = $\ln 2/(3.8 \times 24 \times 3600)$ = $2.1 \times 10^{-6} s^{-1}$		C1 A1	[2]
			2. $A = \lambda N$ 97 = 2.1 × 10 ⁻⁶ × N $N = 4.6 \times 10^7$		C1 A1	[2]
		(ii)	$1.0m^3$ contains (6.02 \times $10^{23})/(2.5 \times 10^{-2})$ air molecules		C1	
			ratio = $(4.6 \times 10^7 \times 2.5 \times 10^{-2})/(6.02 \times 10^{23})$ = 1.9×10^{-18}		A1	[2]

Pa	age	5 Mark Scheme		Syllabus	Paper	
			Cambridge International AS/A Level – October/November 2015	9702	42	
			Section B			
9	(a)	(i)	(+) 3.0 V		B1	[1]
		(ii)	potential = 6.0 × {2.0 / (2.0 + 2.8)} = 2.5 V		C1 A1	[2]
		(iii)	potential = 6.0 × {2.0 / (2.0 + 1.8)} = 3.2 V		A1	[1]
	(b)	at V _o	10 °C, $V_A > V_B$ _{UT} is –9.0 V (allow "negative saturation")		M1 A1	
		at (<i>if</i>	20°C, V _{ouT} is +9.0V 20°C considered initially, mark as M1,A1,B1)		B1	
		su	dden switch (from -9 V to $+9$ V) when $V_A = V_B$		B1	[4]
10	(a)	sh co	arpness: clarity of edges/resolution (of image) ntrast: difference in degree of blackening (of structures)		B1 B1	[2]
	(b)	(i)	X-rays produced when (high speed) electrons hit target/anode <i>either</i> electrons have been accelerated through 80 kV <i>or</i> electrons have (kinetic) energy of 80 keV		B1 B1	[2]
		(ii)	$I_{\rm T}/I = {\rm e}^{-3.0 \times 1.4}$ = 0.015		C1 A1	[2]
	(c)	for μx so	good contrast, μx or $e^{\mu x}$ or $e^{-\mu x}$ must be very different or $e^{\mu x}$ or $e^{-\mu x}$ for bone and muscle will be different than that for muscl good contrast	е	B1 M1 A1	[3]
11	(a)	fre in	quency of carrier wave varies synchrony with the displacement of the signal/information wave		M1 A1	[2]
	(b)	(i)	5.0V		A1	[1]
		(ii)	720 kHz		A1	[1]
		(iii)	780 kHz		A1	[1]
		(iv)	7500		A1	[1]

Page 6		6	Mark Scheme	Syllabus	Pap	per	
			Cambridge International AS/A Level – October/November 2015	9702	42		
12	(a)	(i)	(gradual) loss of power/intensity/amplitude (not "signal")		B1	[1]	
		(ii)	e.g. noise can be eliminated (not "there is no noise") because pulses can be regenerated		M1 A1		
			e.g. much greater data handling/carrying capacity because many messages can be carried at the same time/greater	ter	M1		
			bandwidth		A1		
			e.g. more secure because it can be encrypted		(M1) (A1)		
			e.g. error checking because extra information/parity bit can be added		(M1) (A1)	[4]	
			(allow any two sensible suggestions with 'state' M1 and 'explain' A1)			
	(b)	ati	tenuation = 10 lg(145/29) (= 7.0)		C1		
		at	tenuation per unit length = $7.0/36$ = $0.19 \mathrm{dB km^{-1}}$		A1	[2]	